Rishabh P. Sharma

October 2024

RESEARCH INTERESTS

Self-organization, Pattern formation, Growth processes, Fluid dynamics, Porous medium, Multiphase flows, Soft-matter physics

EDUCATION

2020 – present	University of Warsaw, Poland Ph.D. in Physics; <i>Advisors:</i> Prof. Piotr Szymczak and Prof. Mariusz Białecki Title: Self-organization of flow in dissolving rocks I have developed an integrated approach that combines theoretical and computational modelling with 4D X-ray images of a porous rock to study dissolution patterns in rock samples. I have also developed image analysis tools to extract the structure of the dissolution patterns from dissolution experiments.
2015 – 2017	Thapar University, India M.E. in Thermal Engineering; <i>Advisor:</i> Prof. Neeraj Kumar Title: Nodal integral method for convection-diffusion transport in complex domain using linear and higher order quadrilateral qlements
2010 - 2014	Uttar Pradesh Technical University, India B.Tech. in Mechanical Engineering

RESEARCH EXPERIENCE

2021 - 2024	Research team member, Faculty of Physics, University of Warsaw in a project, developing computational models to study dissolution patterns in unsaturated medium
2018 - 2021	Research team member, Institute of Geophysics, Polish Academy of Sciences , in a project modelling dissolution patterns in saturated medium with Darcy models media
Feb-Oct, 2018	Project Tech. Asst., Dept. of Energy Sciences. IIT Bombay in a project modelling the propagation of non-linear ultrasonic waves in a tumour
2017 - 2018	Project Res. Assc., Dept. of Aerospace Engg., IIT Bombay in a project investigating particulate flows using CFD-DEM modelling approach

AWARDS/FUNDING

- 2024 IDUB University research microgrant to attend a physics school
- 2024 IDUB University support for completion of doctoral dissertation
- 2023 IDUB University research microgrant to attend a physics school
- 2023 Early Career Scientist's Travel Support Award by European Geophysical Union
- 2022 Uni. Integrated Development Programme (ZIP) travel support for a research visit
- 2021- Scientific scholarship in a project funded by National Science Centre
- 2020– Interdisciplinary doctoral school scholarship
- 2020 SEG Student Chapter, Field Camp-2020, IGF-PAN
- 2018 Scientific scholarship in a project funded by National Science Centre
- 2015 Graduate Scholarship, Ministry of Education, Government of India
- 2010 University Scholarship for Merit-Incentive Students
- 2010 Bronze Medal in Programming Diploma by NCVT, Government of India
- 2006 11th position in Pioneer 7th science competition

JOURNAL ARTICLES

- Cooper, M. P., Sharma, R. P., S. Magni, T. P. Blach, A. P. Radlinski, K. Drabik, A. Tengattini, and P. Szymczak (May 2023). 4D tomography reveals a complex relationship between wormhole advancement and permeability variation in dissolving rocks. *Advances in Water Resources* 175, 104407.
- 2. Sharma, R. P., M. Białecki, M. P. Cooper, A. P. Radliński, and P. Szymczak (June 2023). Pore merging and flow focusing: Comparative study of undissolved and karstified limestone based on microtomography. *Chemical Geology* **627**, 121397.
- 3. Sharma, R. P., J. Deng, P. K. Kang, and P. Szymczak (Oct. 2023b). Effects of Mixing at Pore Intersections on Large-Scale Dissolution Patterns and Solute Transport. *Geophysical Research Letters* **50**(21).
- 4. Sharma, R. P. and N. Kumar (2018b). Nodal integral method for convection-diffusion transport using linear and higher order quadrilateral elements. *Numerical Heat Transfer, Part B: Fundamentals* 74(3), 623–645.

CONFERENCE PROCEEDINGS

1. Sharma, R. P. and N. Kumar (2018a). Nodal integral method for complex geometries using higher order elements. In: *Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017)*. Begellhouse.

CONFERENCE PRESENTATIONS

- 1. Dzikowski, M., P. Szymczak, and **Sharma, R. P.** (2023). Empowering pre-exascale computers for Darcy-Brinkman simulation of wormhole growth based on X-CT data-can we recover experiments? In: EGU23-739.
- 2. Sharma, R. P., P. K. Kang, and P. Szymczak (May 2023). Effects of mixing at pore intersections on largescale dissolution patterns. In: *EGU General Assembly 2023, Vienna, Austria*, EGU-275, pp.EGU-275.
- 3. Białecki, M., **Sharma, R. P.**, M. P. Cooper, and P. Szymczak (May 2022). Comparative study of undissolved and karstified limestone based on microtomography. In: *EGU General Assembly 2022, Vienna, Austria,* EGU22-5229, pp.EGU22-5229.
- 4. Lipar, M., P. Szymczak, R. Ciglič, **Sharma, R. P.**, M. Zorn, U. Stepišnik, and M. Ferk (May 2022). Challenges in characterisation and mapping of solution pipes. In: *EGU General Assembly 2022, Vienna, Austria*, EGU22-1619, pp.EGU22-1619.
- 5. **Sharma, R. P.** and P. Szymczak (2021). "Network modelling of wormholing process in rocks". DREAMS21 Workshop, University of Paris Diderot, Laboratoire Mati'ere et Syst'emes Complexe.
- Szymczak, P., M. P. Cooper, S. Magni, Sharma, R. P., T. P. Blach, A. P. Radlinski, M. Dohnalik, and A. Tengattini (Apr. 2021). Wormhole Growth in Dissolving Limestones: Insights from 4D Tomography. In: EGU General Assembly 2021, Vienna, Austria, EGU21-13883, pp.EGU21–13883.
- 7. Sharma, R. P., M. Cooper, A. J. C. Ladd, and P. Szymczak (2020). "Flowfield study in dissolved porous media". University of Wrocław, Institute of Theoretical Physics CFD Wrocław-7 workshop, Wrocław, Poland.
- Szymczak, P., M. P. Cooper, S. Magni, Sharma, R. P., T. P. Blach, A. P. Radlinski, M. Dohnalik, and A. Tengattini (Dec. 2020). Combined Neutron and X-ray Time-Resolved Tomography of Wormhole Growth in Dissolving Limestones. In: AGU Fall Meeting. Vol. 2020, H081-01, pp.H081-01.

POSTERS

- 1. **Sharma, R. P.**, J. Deng, P. K. Kang, and P. Szymczak (2024). "Effects of mixing at pore intersections on large-scale dissolution patterns and solute transport". 6th Cargese summer school: FLOW and Transport in porous and fractured Media (FLOWTIME), Cargese, France.
- 2. Deng, J., **Sharma, R. P.**, P. Szymczak, and P. K. Kang (Dec. 2023). Anomalous Transport through Dissolving Fracture Networks. In: *AGU Fall Meeting 2023, San Francisco, CA*. Vol. 2023, H12D-04, pp.H12D–04.
- 3. Dzikowski, M., **Sharma, R. P.**, and P. Szymczak (2023). "High-resolution Darcy-Brinkman simulation of wormhole growth based on X-CT data". InterPore-2023, Edinburg, Scotland.
- 4. Sharma, R. P., M. Białecki, and P. Szymczak (2023). "How does chemical erosion change the pore structure of a rock?" Geilo School 2022-The Physics of Evolving Matter: Memory, Learning and Evolution, Geilo, Norway.
- 5. **Sharma, R. P.**, M. Cooper, and P. Szymczak (2023). "Geometric measures of wormholes in dissolving rocks". Geilo School 2023-The Physics of Evolving Matter Continued: Connectivity, Communication and Growth, Geilo, Norway.

- Cooper, M. P., Sharma, R. P., S. Magni, P. N. H. Vu, T. Ladd, A. P. Radlinski, T. P. Blach, K. Drabik, A. Tengattini, and P. Szymczak (Dec. 2022). Competition Between Wormholes in Dissolving Rocks Captured with 4D Tomography and Numerical models. In: *AGU Fall Meeting*. Vol. 2022, H52N-0635, pp.H52N–0635.
- 7. Dzikowski, M., P. Szymczak, and **Sharma, R. P.** (Dec. 2022). Large Scale Simulations of Wormhole Growth in Dissolving Porous Media using Lattice Boltzmann Method. In: *AGU Fall Meeting*. Vol. 2022, H52N-0644, pp.H52N-0644.
- 8. **Sharma, R. P.**, P. K. Kang, and P. Szymczak (2022). "The impact of intersection mixing rules on the network-scale dissolution patterns". 7th Warsaw School of Statistical Physics, Sandomierz, Poland.
- 9. Sharma, R. P., M. P. Cooper, A. J. C. Ladd, and P. Szymczak (Apr. 2021). Subpixel determination of wormhole tip position in 4D tomography of dissolving limestone cores. In: *EGU General Assembly 2021, Vienna, Austria,* EGU21-14962, pp.EGU21-14962.
- Sharma, R. P., M. P. Cooper, A. J. C. Ladd, and P. Szymczak (May 2020). Modeling wormhole formation in digital rock samples: the role of segmentation and permeability-porosity relationships. In: *EGU General Assembly 2020, Vienna, Austria*. EGU General Assembly Conference, 996, pp.996.
- Cooper, M. P., S. Magni, Sharma, R. P., P. N. Vu, T. P. Blach, A. P. Radlinski, M. Dohnalik, A. Tengattini, A. Ladd, and P. Szymczak (2019). Determining the influence of pore-scale geometry on wormhole formation. In: *AGU Fall Meeting*. Vol. 2019, pp.H21M–1931.

TALKS/SEMINARS

- 1. Sharma, R. P., M. Cooper, and P. Szymczak (2021a). "Fractal shapes in dissolving rocks". Symposium of young scientist (SMN2021), University of Warsaw.
- 2. Sharma, R. P., M. Cooper, and P. Szymczak (2021b). "Study of dissolution channels and their geometrical properties using XCMT images". Looping Network Meeting, University of Paris Diderot, Paris, France.
- 3. **Sharma, R. P.**, M. Cooper, and P. Szymczak (2021c). "Study of geometrical measures of wormholes using 4D-tomography". University of Warsaw, Department of Complex Modelling Complex system seminar, Nov-2021.
- 4. **Sharma, R. P.**, M. Cooper, and P. Szymczak (2021d). "Study of geometrical measures of wormholes using 4D-tomography". University of Warsaw, Faculty of Physics Soft matter and statistical Physics seminar, Nov-2021.

TECHNICAL SKILLS

Programming Languages: C, C++, Python, Fortran **Computing:** OpenFOAM, Matlab, Mathematica

TEACHING

Graduate Teaching Assistant

Fall, 2023Hydrodynamics and ElasticitySpring, 2022Geophysical Laboratory-II

Student Team Project Supervisor

Spring, 2022 Study of the hydrodynamic properties of a mixture of ground coffee and water Spring, 2024 Introduction to OpenFOAM

REFERENCES

Prof. Piotr Szymczak	Prof. Mariusz Białecki
Professor	Associate Professor
Institute of Theoretical Physics	Institute of Geophysics
University of Warsaw, Poland	Polish Academy of Sciences, Poland
piotrek@fuw.edu.pl	bialecki@igf.edu.pl
Prof. Peter Kang	Prof. Anthony Ladd
Associate Professor	Professor
Department of Earth & Environmental Sciences	Department of Chemical Engineering
University of Minnesota, Minneapolis, USA	University of Florida, USA
pkkang@umn.edu	tladd@che.ufl.edu